
A note on the Atiyah-Singer index theorem for manifolds with totally antisymmetric H torsion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 2279

(http://iopscience.iop.org/0305-4470/21/10/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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A note on the Atiyah-Singer index theorem for manifolds with 
totally antisymmetric H torsion 

N E Mavromatost 
Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

Received 2 September 1987, in final form 26 January 1988 

Abstract. We present two proofs of the Atiyah-Singer index theorem for the Dirac operator 
for even-dimensional orientable manifolds without boundary with totally antisymmetric 
torsion with vanishing curl ( H  torsion) which, for example, may be provided by the field 
strength of fhe antisymmetric tensor occurring in the supergravity multiplet of superstring- 
inspired ten-dimensional theories, or by the structure constants of the group manifold in 
Kaluza-Klein theories. One of the methods, which is considered as formal, utilises a 
modified version of the conventional heat kernel regularisation. The other which is shown 
to be connected to the first one through a Legendre transformation uses the supersymmetric 
path integral approach. Of course, as far as the index is concerned, the H parts form a 
globally defined exact form and hence our result is consistent with the invariance of the 
index under the inclusion of torsion. The obvious advantage of our approach is the 
simplicity of the calculations in contrast to conventional regularisation methods which are 
practically impossible to handle beyond four dimensions, despite the trivial effects of the 
torsion on the (physical) results. 

A torsion interpretation of the field strength of the antisymmetric tensor B,, occurring 
in the supergravity multiplet of the Chapline-Manton-Green-Schwarz ten-dimensional 
theory (Chamseddine 1981, Bergshoeff et al 1982, Chapline and Manton 1983, Green 
and Schwarz 1984) arises naturally within the context of a low-energy analysis of the 
heterotic string theory (Daniel and Mavromatos 1986, Sen 1986, Hull and Townsend 
1986, Cai and NGiiez 1987, Bento and Mavromatos 1987, Gross and Sloan 1987, 
Mavromatos 1987). As a consequence, the existence of H torsion parts in the Lorentz 
Chern-Simons modification of the field strength dB  of the antisymmetric tensor by 
Green and Schwarz (1984) brings up the interesting question of which effects these 
terms have on the anomaly cancellation mechanism of the ten-dimensional theory. 
The most elegant (althoughformal) way of studying these effects is the index theorem 
approach. According to this, the ten-dimensional non-Abelian gauge and gravitational 
anomalies are determined by the chiral anomalies of Dirac or Rarita-Schwinger 
operators in a spacetime with two dimensions higher. The latter are merely the index 
density (up to irrelevant globally defined total divergence terms) of the pertinent 
Atiyah-Singer index theorem (Atiyah and Singer 1968). In this way it has been shown 
(Hull 1986) that the H parts of the Lorentz Chern-Simons terms act like local 
counterterms in the effective action and therefore have no effect on the cancellation 
mechanism. Of course, as has been shown by Chern (1979), the index theorem is 
unaffected by torsion terms since they form globally defined exact forms and thereby 
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drop out under integration over the compact 2d-dimensional orientable manifold M 
without boundary which simulates spacetime. Hence, the result concerning the torsion 
parts of the chiral anomaly depends on the prescription one uses for the computation. 
In spite of the trivial role of the torsion, however, in the physical literature the problem 
of studying the chiral anomalies in torsionful spaces has been confined, so far, to 
four-dimensional Einstein-Cartan spaces (Obukhov 1983, Yazima and Kimura 1986, 
Barth 1987). The reason is that the heat kernel methods used for the regularisation 
of the infinite trace of the chirality matrix rd+,  , which practically determines the chiral 
anomaly, are highly dimension dependent and are so complicated when one tries to 
go beyond four dimensions that any attempt of extracting results without a computer 
seems impossible. Hence, the heat kernel methods, although probably the most rigorous 
approach to the problem, must be abandoned, unless new techniques are found. It is 
the purpose of this note to show that a modified version of the heat kernel, based on 
a background expansion, yields results amazingly quickly, at least for the case of totally 
antisymmetric H torsion. In this note we deal with torsion provided by the anti- 
symmetric tensor field strength. We stress, however, that the method is formal to some 
extent as we shall see below. Its proper justification comes from comparison of the 
results with more rigorous attempts, like the supersymmetric path integral method to 
which it is shown to be associated via an appropriate Legendre transformation?. 

The structure of this paper is as follows. First we review basic features of the 
formalism of torsionful spaces, paying particular attention to discussing properties of 
the H torsion. Next we present a modified heat kernel method which, as we show, 
simplifies enormously the computation of the relevant Atiyah-Singer index theorem 
for Dirac (spin-;) fermions in D dimensions. Comparison of the relevant results for 
the chiral anomalies (within a given prescription) with those obtained by associated 
conventional heat kernel approaches is made for the four-dimensional Einstein-Cartan 
spaces, which constitute the only case where results from conventional heat kernel 
expansions have been obtained. Connection of this method for the computation of 
the chiral anomalies with the supersymmetric path integral approach through an 
appropriate Legendre transformation is explained in some detail. 

Throughout this work we shall confine ourselves to the case of the Dirac operator, 
acting on spin-; Dirac fermions. The reason is that if we restrict ourselves only to 
Lagrangian theories, i.e. theories in which the relevant operator can be derived from 
an action principle, then the torsion cannot couple consistently to higher-spin fermion 
states unless we are working with supergravity theories, where, however, the dynamical 
content of the torsion is quite different since it is determined by the matter fields 
themselves (Obukhov 1983, de Wit 1984). 

In evaluating chiral anomalies for Dirac spin-4 fermions (which are free from 
gravitational anomalies) in the presence of totally antisymmetric torsion in the path 
integral approach we study the object (Fujikawa 1979): 

f To our knowledge, a similar method has been suggested by Fujikawa et a1 (1986), but the authors restricted 
themselves to the Riemannian case only. Also we note the work of Maiies and Zumino (1986) where a 
W K B  approximation is used for the evaluation of the heat kernel. The method seems to be related to ours. 
Again the authors restrict themselves to zero torsion. As we shall discuss below some parts of the relevant 
calculations in the torsionful case are highly non-trivial, despite the trivial effects of the torsion on the final 
(physical) results. 
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where p,(x) are the orthonormal eigenfunctions of the generalised Dirac operator 
with totally antisymmetric torsion? 

The torsion is associated with the antisymmetric part of the affine connection 

2;” = FtU - F;, = 2FfPY1. (3) 
The generalised spin connection on the other hand contains the contorsion which is 
defined by the vielbein postulate 

$ , ( ~ , F ) e z =  e ~ , , + G ~ , e b , - F $ e ~ = ~  

$,(G,F)et = eh,,,-G$eh,+F^,,e:=O. 

( j a b  = m i ’ +  eaeb P C  yt‘ 

YCU = f( Y e p p u  + XPUP + XPJ 

Y;y  = fXP,,. ( 6 b )  

[$,, rp] = (3,rp) = 0. 

(4) 

The contorsion is defined as 

( 5 )  
where utb is the torsion-free spin connection. 

From (4) it is clear that 

( 6 a )  
which in the case of totally antisymmetric torsion simplifies to 

Also an important consequence of (4) is the covariant constancy of the I” matrices 
with respect to the torsional covariant derivative 

( 6 c )  
For the moment we ignore Yang-Mills fields. Their inclusion is straightforward 

and will be discussed later. 
We note that the total antisymmetry of the torsion guarantees that the geodesic 

equations are unaffected by the inclusion of torsion and that the torsionful covariant 
derivative is compatible with the metric (i.e. the latter is covariantly constant). 

We may regulate (1) in a gauge invariant way by introducing a Gaussian cut-off 

where the Hamiltonian operator is the square of the generalised Dirac operator. Due 
to the total antisymmetry of the H torsion as well as the Bianchi identity: 

which is specific to the H torsion (i.e. derivable from the curl of a two-rank antisym- 
metric tensor field BWu)  we may write this square in the following remarkably simple 
form: 

a[,,Xvpu1 = v [ , ~ ~ ~ ~ ~  = 0 ( 7 b )  

PH = -p ( rG, (G) ) ( rv$u(~) )  
1 p~ ab - -  

= - ~ { g w ” ~ d , ~ , ~ ~ U  U Rnblrv -~iU’””&l,,”$:h} 
= -($, -$Xgbuab)(8,  -$XpcduCd)+X - -  7 

- g p ’ ” 9 ; a ; + x  = -0 + x  ( s a )  
6; =a, -$(U + 2 ~ ) , ~ ~ u ~ ~  ( 8 6 )  

t Greek characters denote world indices. Latin letters are used for tangent space indices. 
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where 4; is a covariant derivative whose spin connection contains three times more 
contorsion than the corresponding one in the Dirac operator (2). 

By X we denote parts without I‘ matrices, containing the Riemannian scalar 
curvature as well as terms of the form H 2 ,  which, as we shall see, do not contribute 
to the index. 

Note that above we made use of special properties of the generalised curvature 
tensor with torsion. In particular we used the fact that it no longer satisfies the cyclic 
identity 

@ [ g v p r r ]  = - f x P p v X p u ] A  (9a) 
and that the Ricci tensor has an antisymmetric part 

(9b) 1 h  1 -  @,, I A = - zv %?,A, y = - 7 9  A ( G, F) %?A, y . 
Motivated by the background expansion used in the supersymmetric path integral 

method to obtain the small fluctuation Lagrangian for the relevant one-dimensional 
supersymmetric system (Alvarez-GaumC 1983a, b, Mavromatos 1986) we perform the 
following expansion around a point xo (Fujikawa et al 1986) 

X, = Xo, +@ Y,. (10) 
For the consistency of the present scheme of course the final results should be 
independent of y. The scheme (10) is the simplest one (which corresponds to a 
symmetric ordering prescription in the supersymmetric path integral method as we 
shall see). 

Choosing our coordinate system at xo such that (Veltman 1975) 

and performing appropriate local Lorentz transformations to the fermionic variables 
we can write ( sa )  in the following form (in the expansion up to O ( p )  the metric term 
in g ” ” g ;  g ;  contributes only through its flat-space piece, Vu, due to the conditions 

(12) 
Above we used modified Lie transports (Alvarez-GaumC and Ginsparg 1985), which 
consist of performing (non-anomalous) local Lorentz transformations to the usual Lie 
derivative in the expansion of the various quantities in (12). For example, our modified 
Lie transport for the connection 1-form which is dictated by the necessity of removing 
the non-covariant terms appearing in the ordinary Lie transport expression is 

(11): 

p~~ = - [a /dy ,  - $ipyYuabjWaby,[ ( w  +$H)(X~)]]’  + P X (  xo). 

X , + X ” -  5” ( X I  

3; w Zb (x) = 2 6  w Zb (x ) + a, [ - 5’w Gb (x 13 + [ w, ( x 1, - 5’0, (x 13 Ob (13) 
= ~ ’ R a b y , ( X ) .  

Moreover our modified Lie transport will be accompanied by a further local Lorentz 
rotation which removes the terms proportional to the generalised connection Gib(xo)  
in the expansion of ( sa )  around xo. 

An equivalent way of stating this is that we choose our local coordinate system on 
the tangent space of the manifold based at xo in such a way that the generalised 
connection 

G Zb( xo) = 0. (14) 



Atiyah-Singer index theorem 2283 

This can always be achieved in a gauge theory as a consequence of the Schwinger-Fock 
gauge condition (Fock 1937, Schwinger 1951) 

8,(X)(X-X,)” =o. (15) 

The latter is always implementable by means of the transformation (Cronstrom 1980, 
see also Zuk 1986) 

By simply requiring this condition to be valid near xo we get .&,(xo) = 0. 
From the above discussion it becomes clear why this method can give formal results 

in the torsionful case. Our basic assumption was that the generalised spin ‘connection’ 
transforms as a connection under local Lorentz transformations. This is not the case 
if the original Riemannian connection is flat, since the contorsion tensor transforms 
covariantly under local Lorentz transformations as a consequence of the invariance of 
the torsion tensor and the vielbein rotations. One may argue that we are not interested 
in such cases since the classical action with fermions and torsion only is not invariant 
under local Lorentz rotations. However, we understand that arguments of this kind 
are not convincing to the mathematicians (in fact one can give a counterargument that 
gauge symmetry does not exist to the free-fermion action in Dirac theory but we do 
not consider the theory wrong ( !)). One way of resolving this difficulty is by restricting 
ourselves to supergravity theories as in the case of torsion provided by the field strength 
of the antisymmetric tensor in the supergravity multiplet of the Chapline-Manton- 
Green-Schwarz theory. In such cases non-trivial gravitational backgrounds are 
required on account of local supersymmetry. As we mentioned above, however, in 
such cases the coupling of torsion to higher spin fermion states, like gravitinos, has a 
quite different dynamical content due to its determination by the matter fields them- 
selves with the result that the torsion cannot be treated as an external gravitational 
background. In any case, as we shall show below, the justification that this formal 
method yields the correct results comes from its equivalence with the supersymmetric 
path integral approach (which has been originated by Alvarez-GaumC and Witten 
(1984) and established rigorously by Getzler (1984)). Further supporting evidence is 
provided by the agreement of the results obtained here with the rigorous heat kernel 
direct computation in four dimensions (Obukhov 1983). Unfortunately as we men- 
tioned above, we cannot perform the heat kernel expansion in higher dimensions due 
to the extremely complicated tensorial algebra in the torsional case (in the Riemannian 
case such calculations have been performed by Endo and Takao (1985)). 

After this necessary digression we turn our attention to equation ( 7 a ) .  Upon using 
plane-wave decomposition and discarding the terms X which do not have the correct 
structure to survive the small-p limit, we arrive at the effectively flat problem 

xexp(-PW exP[iKc(Xo+@Y), + K * (O(P)) l  (17 )  

where above the plane wave is a shorthand notation for the refined plane-wave 
expression in curved spacetime which is defined through the modified expression for 
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the 6 functional (Fujikawa 1981, deWitt 1975): 

where u ( x ,  x’) is the geodesic biscalar. Equation (17) is derived by expanding 

X’X’ lim Tr[TD+l exp(-/3H(x))6‘D’(x, x’)] 

JX a ( x )  = i, f ; ” ~  pd Tr rD+l exp( - iv )  exp(-Ho) e x p ( i v )  

(18b) 

around xo (recall that the torsion does not enter the geodesic equation). Upon rescaling 
4 K + K we arrive at the result 

1 

(19) w0 = (a/ay,  -$pyp@Y,(x0))2 gpv = anbfiab@” 

which shows that in the limit p + 0 only terms with 2d r matrices and of O ( p d )  will 
survive. This was the reason we drop the X(xo) terms from our computation. 

This also leads us to consider @,,[(U +$H)(xo)] as a constant (in y space) commut- 
ing electromagnetic field (Fujikawa et al 1986). The problem then of evaluating (1) 
has been reduced to that of a flat-space electromagnetic field which can be evaluated 
by simply copying the result of Schwinger (1951), upon making the necessary normalisa- 
tion changes, since we are working in 2d dimensions. We note again that the above 
method yields the integrated chiral anomaly rather than the anomaly itself and therefore 
can only give information up to explicit total divergences (which are irrelevant so far 
as the index is concerned anyway). The result then for the index theorem for a 
generalised Dirac operator with totally antisymmetric torsion is 

ind(i5%(o++H)) =lMld Tr[ d e t ( y ) ]  iii/4.rr 1 s inh ( iR /4~)  voI 

The determinant refers to the world indices p, v of the ‘matrix’ 

(6,; = a a b f i a b w l v ( U  +ZH) p , v = l ,  ..., 2d. (206) 

f i @ y p m - ~ p m p y  = -5[vxp]pm + G)[mxp,@Y. 

~ @ u p m ( w  +m = fi,,,(U -W). 

We stress that this is not the curvature 2-form, since in the case of non-zero torsion 
we have the following property of the generalised curvature 

(20c) 

For the particular case that the torsion satisfies the Bianchi identity (7b), the following 
relation emerges 

(20d)  

Hence the matrix (20b) may be interpreted as a generalised matrix-valued curvature 
two-form but with respect to a connection with torsion -$H. The standard result for 
the index is obtained by making the substitution 

(20e) 

Thus the result (within the given prescription) may be expressed in terms of the Dirac 
genus for a manifold with -3H torsion. We note at this stage that the torsion-dependent 
parts of the chiral anomaly are highly prescription dependent. Of course from the 
work of Chern (1979) and Wu and Zee (1985) we know that the torsion terms conspire 

-$H)),” + $iipYabk?a A e b . 
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to yield globally defined exact forms and, therefore, the index remains unchanged 
relative to the Riemannian case, as expected from the fact that it is a physical quantity 
and that as such it should be independent of the prescription used. 

Before going into the formal connection of this method with the supersymmetric 
path integral it would be interesting to compare our result (20a)-(20e) with the 
four-dimensional direct calculation of Obukhov (1983) and Yazima and Kimura (1986) 
for Einstein-Cartan spaces. Although above we used the specific form of a (totally 
antisymmetric) H = dB, we note, however, that in four dimensions only the totally 
antisymmetric part of the torsion couples to the fermions and the problem is very 
similar (but not quite) to that of an axial chiral U(l) gauge field in curved space. 
Hence comparison of the results makes perfect sense. 

The result that the direct calculation via heat kernel methods gives for the chiral 
anomaly in this case is 

+ (total divergence; irrelevant for our purposes)]. (21) 
Here fFY  is the field strength of the axial electromagnetic field corresponding to the 
totally antisymmetric component of the torsion (axial trace) 

f,Y = A,,” - A , ,  
A , 2 , a p y z m P Y .  

On the other hand the result for the topological density (which is obtained by collecting 
from the expansion of the Dirac genus a (volume) 4-form) is 

( i /384r2) E aPys&,ap iFYys 
= (i/ 87r2)[&& n P y s  RPvap R’*”ys + &E,”‘~ f f A P  

+total divergence (not the same as in equation (21))l. (23) 

A, + -3A, (24) 

Remarkably we observe that (23) corresponds to the result (21) upon substituting 

which is consistent with the result in (20a)-(20e) (up to total divergence terms which 
cannot be seen since our approach gives the integrated chiral anomaly). Of course 
the minus sign in the torsion cannot be seen due to the appearance of the axial potential 
A, in (21) in quadratic expressions. 

We now come to a brief discussion on the connection of the present method with 
the supersymmetric path integral. Since the latter is based on a Lagrangian formalism 
(Cecotti and Girardello 1982, Alvarez-Gaumii 1983a, b) and by construction its Hamil- 
tonian is the square of the Dirac operator (cf (7))  a Legendre transformation must 
exist which would connect the two pictures. This transformation can be found by the 
analogy of our system with the electromagnetic field case. The Legendre transformation 
assumes the form (Lee 1981, Fujikawa et a1 1986): 
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(where i = d61d.r) with the periodic boundary conditions on the bosonic variables 

.$”(0)=5,(1)=y’. (26) 

The Hamiltonian density appearing in (25) is given by Ho in (19) after the replacement 
of yw by 6 ” ( ~ )  and -i 8/8y” by p ” ( . r ) .  The integrals over 6 do not include the zero 
oscillator modes on account of the explicit y integration. This is denoted by a prime. 

The normalisation factor N will be fixed by demanding that in the zero-torsion 
limit the result (25) coincides with the Atiyah-Singer index theorem for the ordinary 
Dirac operator. 

Performing the momentum integrations in (25), by completing the squares, we obtain 

This coincides with the small fluctuation (second-order) expansion around constant 
(in 7) background configurations of the following supersymmetric system (spinning 
particle in a space with torsion) (Braden 1986, Mavromatos 1986, 1987): 

or in tangent space notation 

after performing the fermionic fluctuation integrations and making the substitutions 

a 

which are justified by the commutation relations of the fermionic zero modes (Alvarez- 
Gaumi 1983a, b). 

In (29) the connection & = w +;yH contains some torsion whose amount is fixed 
by the requirement that the quantum Hamiltonian (within a certain prescription) 
coincides with the square of the operator under consideration. As we shall show below 
this fixes y to 3 in the particular prescription we use. 

We note at this stage that in the case under study, where the H-torsion is provided 
by the field strength of the antisymmetric tensor B,,, the system (28) is obtained by 
dimensional reduction (i.e. dropping spatial derivatives) of a two-dimensional heterotic 
U model propagating in graviton and antisymmetric tensor backgrounds. This is not 
the same system as the one used in Alvarez-Gaumi (1983a, b) where the N = f supersym- 
metry generated by a single supercharge was achieved by equating the two components 
of the world sheet spinors of the N = 1 supersymmetric (+ model (di Vecchia and 
Ferrara 1977, Freedman and Townsend 1981). In the purely Riemannian case the 
terms in the N = 1 model depending on the curvature tensor drop out in such a case 
due to the Bianchi identity. This is not the case when torsion is present due to (9a). 
The correct system to be used in our case is the heterotic model in which one uses the 
chiral projection to set one of the two components of the world sheet spinors to zero 
(Braden 1986, Mavromatos 1986, 1987). 
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The system (29) possesses constraints due to the dependence of the fermionic 
variable momenta on the variables themselves. Its quantisation will therefore proceed 
via the Dirac bracket formalism (details may be found in Davis et al (1984) and 
extension to torsionful cases in Braden (1986)). 

The system (29a) has a N = j  supersymmetryt 

secpi = &$hi 

se+' = 

corresponding to a classical supercharge 

Q,, = + i ~ i  -$(+yHirs)+'+'+' 
(32) 

The quantum supercharge is evaluated using the symmetric ordering prescription. 
Due to the complete antisymmetry of the torsion tensor a symmetrisation of the torsion 
parts is not necessary (Braden 1986, Mavromatos 1986, 1987) 

Q qu = -0:" =$(+'rl + T ! + ' )  -+iyH,,,+'+'+' 

= -i+'[V, + i y ~ ~ ~ ~ + ~ + ~ ]  + - t i r ag ;  (33) 

where 6; is a covariant derivative with torsion i yH.  
In writing the quantum supercharge in the form (33), in which the Christoffel 

connection parts of the covariant derivative have been separated from their torsion 
counterparts, we took into account the (implicit) torsion dependence of the operators 
T' ,  as becomes clear from their canonical Dirac brackets which are proportional to 
the generalised curvature tensors (Braden 1986). 

In order that the quantum Hamiltonian of the system coincides with the square of 
the Dirac operator with torsion H, the torsion in (29) must be 3H. This is the origin 
of the factor of three in the amount of torsion in the connection, within the context 
of the given prescription. We note at this stage that by fixing the prescription for the 
quantum ordering there are no further ambiguities. In our case the symmetric prescrip- 
tion seems most appropriate in yielding the appropriate supercharge in the Riemannian 
case. Of course, for the consistency of both calculational schemes the final result must 
be independent of the prescription used (provided that the prescription is the correct 
one) and in fact it is, since the index is independent of the amount of torsion included 
in the connection. As we have seen above by adopting the prescription which amounts 
to the expansion (lo),  we were led to the supersymmetric path integral result (28) with 
torsion 3H as required by the symmetric prescription for consistency. It is in this 
sense that we associate the symmetric ordering prescription with the scheme used in 
the background expansion (10). 

The small fluctuation expansion of (29) around constant background configurations 
can be most easily performed by using normal coordinates (Alvarez-GaumC et a1 1982, 
Fridling and Van de Ven 1986), the passage to which is guaranteed by the general 
coordinate invariance of the target space and the fact that in the case of N =$  
supersymmetry that we are dealing with there are no constraints on the coordinates 

t In the case of group manifolds there is a one-parameter family of such supersymmetries (Braden 1986). 
For the purposes of this paper, we do not restrict ourselves to this case, which corresponds to the case 
under study by treating the torsion as covariantly constant. 
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of the target space which would deserve special attention. The result is (Mavromatos 
1986, 1987) 

(34) 

Under the fermionic fluctuation integration the term ig"7j" in (34) does not contribute 
and we obtain the result (28) upon making the substitutions (30) and the formal 
correspondence ip + d .  The latter is justified by the fact that the final result is indepen- 
dent of p (and y). 

We stress again that the calculations were specific to the torsion with vanishing curl. 
The inclusion of gauge fields is straightforward. In the supersymmetric path integral 

method they arise by extending the one-dimensional system appropriately. The 
extension is obtained by dimensionally reducing the gauge sector of the (1,O) supersym- 
metric heterotic U model (Alvarez-GaumC 1983a, b, Alvarez-GaumC and Witten 1983, 
Mavromatos 1987). 

From the modified heat kernel method point of view, the Hamiltonian operator 
now becomes 

p H  = -p (P (d ,  -$k, - i A t T A ) ) 2 =  -p(P'$,(&))2+$[P, T"]Ft,TA 

r ~ = i ' p '  1 R b -  
2 5  5 , + ~ ~ o ~ o ~ a b v ~ ~ ~ + + ~ ~ ~ ~ o ~ 5 " ~ ~  -iva7ja. 

(35) 
F t y  = 2a,,At, + [A,, A,IA. 

appropriately gauge rotated Lie transports to write 
The expansion of the Yang-Mills terms in the Dirac operator is obtained by using 

rJ;A,(x) = rJ&<x) +a,[-5'Ay(x)1+[A,(x), - S Y A y b ) l  

Also by a gauge transformation we can get rid of terms proportional to A,(xo), (which 
corresponds to the gauge condition (15)). Taking into account that in the small-p 
limit the commutator of $d'"F+y(xo) with Ho (cf (15)) is irrelevant for the computation 
of the index density we obtain the result 

which by an appropriate Legendre transformation is related to the aforementioned 
supersymmetric system small-fluctuation expansion after the fermionic fluctuation 
integrations. 

The result for the relevant index theorem, i.e. integrated chiral anomaly (within 
the given prescription), may then be expressed in terms of the Chern character 

,. 
ind(i@(w+fH; A ) ) =  ch(ff)A(w -+H)lvo1  (38) 

M Z d  

where vol indicates that we pick up the volume 2d-form from the expansion of the 
integrand, as a result of the Grassmannian integration over the fermion zero modes. 

Of course the H parts do not contribute to the index, as we have already mentioned. 
This can be most easily exhibited by switching on the torsion adiabatically through a 
homotopy function (Chern 1979, Wu and Zee 1985) and considering the derivative of 
the Dirac genus (which is defined in terms of generalised Pontryagin numbers) with 
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respect to the homotopy parameter. A crucial property, which makes the rate of change 
of the Dirac genus be an exact globally defined form, is the Bianchi identity that the 
generalised curvature 2-forms satisfy, 

filkl = 0 (39) 

5, = W O  + ItH t E [ O ,  13. (40) 

where fi, is a covariant derivative 1-form with respect to the connection 

Here go is the torsion-free spin connection. 
In this paper we have commented on a simplified method of obtaining the index 

theorem of the Dirac operator, and evidently the chiral anomaly, for manifolds with 
totally antisymmetric torsion with vanishing curl. The method consists of using an 
appropriate background expansion of the Hamiltonian operator in the heat kernel 
regularisation which reduces the problem to that of a constant commuting electromag- 
netic field in flat space. The latter has been essentially calculated by Schwinger (in 
four dimensions, but the extension to D dimensions is straightforward). Although the 
method appears to be formal, it yields results which are in agreement with rigorous 
approaches like the supersymmetric path integral to which it is explicitly related by 
an appropriate Legendre transformation. Moreover in four dimensions it agrees with 
the rigorous heat kernel expansions. A brief description of the supersymmetric path 
integral approach to the problem has also been presented. The result is that, within 
the adopted prescription for the regularisation of the relevant infinite quantities encoun- 
tered in the computation, the relevant index can be entirely expressed in terms of the 
Dirac genus of a manifold whose spin connection contains three times more torsion 
(with the sign reversed) than the operator under consideration (of course, it is under- 
stood that the amount of torsion in the connection has no physical significance and it 
is highly prescription dependent). The property of the H field to appear inside 
generalised Pontryagin numbers constructed out of the torsional curvature tensor leads 
to the invariance of the index under any change of the amount of torsion in the 
connection as naively anticipated from topological or continuity arguments. We must 
note at this stage that because of the appearance of extra (relative to the Riemannian 
case) zero modes of the Dirac operator in the presence of torsion (Wu and Zee 1984) 
any naive continuity arguments about the invariance of the index under the inclusion 
of torsion are not correct. It is the property of the torsion to appear inside topological 
invariants, as we have explicitly demonstrated above, that leads to the appearance of 
the extra zero modes in left-right symmetric pairs. 
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